Phase space warping: nonlinear time-series analysis for slowly drifting systems.
نویسندگان
چکیده
A new general dynamical systems approach to data analysis is presented that allows one to track slowly evolving variables responsible for non-stationarity in a fast subsystem. The method is based on the idea of phase space warping, which refers to the small distortions in the fast subsystem's phase space that results from the slow drift, and uses short-time reference model prediction error as its primary measurement of this phenomenon. The basic theory is presented and the issues associated with its implementation in a practical algorithm are discussed. A vector-tracking version of the procedure, based on smooth orthogonal decomposition analysis, is applied to the study of a nonlinear vibrating beam experiment in which a crack propagates to complete fracture. Our method shows that the damage evolution is governed by a scalar process, and we are able to give real-time estimates of the current damage state and identify the governing damage evolution model. Using a final recursive estimation step based on this model, the time to failure is continuously and accurately predicted well in advance of actual failure.
منابع مشابه
New invariant measures to track slow parameter drifts in fast dynamical systems
Estimates of quantitative characteristics of nonlinear dynamics, e.g., correlation dimension or Lyapunov exponents, require long time series and are sensitive to noise. Other measures (e.g., phase space warping or sensitivity vector fields) are relatively difficult to implement and computationally intensive. In this paper, we propose a new class of features based on Birkhoff Ergodic Theorem, wh...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملDynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...
متن کاملNonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study.
Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial:...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 364 1846 شماره
صفحات -
تاریخ انتشار 2006